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Abstract

An (n, k)-perfect sequence covering array with multiplicity λ, denoted PSCA(n, k, λ), is a
multiset whose elements are permutations of the sequence (1, 2, . . . , n) and which collectively
contain each ordered length k subsequence exactly λ times. The primary objective is to de-
termine for each pair (n, k) the smallest value of λ, denoted g(n, k), for which a PSCA(n, k, λ)
exists; and more generally, the complete set of values λ for which a PSCA(n, k, λ) exists. Yuster
recently determined the first known value of g(n, k) greater than 1, namely g(5, 3) = 2, and sug-
gested that finding other such values would be challenging. We show that g(6, 3) = g(7, 3) = 2,
using a recursive search method inspired by an old algorithm due to Mathon. We then impose
a group-based structure on a perfect sequence covering array by restricting it to be a union
of distinct cosets of a prescribed nontrivial subgroup of the symmetric group Sn. This allows
us to determine the new results that g(7, 4) = 2 and g(7, 5) ∈ {2, 3, 4} and g(8, 3) ∈ {2, 3}
and g(9, 3) ∈ {2, 3, 4}. We also show that, for each (n, k) ∈ {(5, 3), (6, 3), (7, 3), (7, 4)}, there
exists a PSCA(n, k, λ) if and only if λ ≥ 2; and that there exists a PSCA(8, 3, λ) if and only if
λ ≥ g(8, 3).

1 Introduction

Throughout, let k and n be integers satisfying 2 ≤ k ≤ n. Let Sn be the set of permutations of
[n] := {1, 2, . . . , n}, and let Sn,k be the set of n!

(n−k)! ordered k-subsets of [n]. An (n, k)-perfect

sequence covering array with multiplicity λ, denoted PSCA(n, k, λ), is a multiset P with elements
in Sn such that each element of Sn,k is a k-subsequence of exactly λ elements of P . Equivalently,
regarding the elements of P as n-sequences, we say that each element of Sn,k is covered by exactly
λ sequences of P . For example, the subset

{12345, 13254, 14523, 15432, 24315, 25413, 34512, 35214, 42513, 43215, 52314, 53412}

of S5 is a PSCA(5, 3, 2). If P is a PSCA(n, k, 1), then P is a set (not a multiset). The size of the
multiset of k-subsequences covered by a PSCA(n, k, λ) P can be counted both as |Sn,k|λ and as(
n
k

)
|P |, from which we obtain the necessary condition |P | = k!λ.
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Perfect sequence covering arrays are related to several other objects from combinatorial design
theory. A PSCA(n, k, λ) P is equivalent to a k-(n, n, λ) directed design ([n], P ) [2, Sect. VI.20]. If
a PSCA(n, k, λ) exists, then it achieves the largest possible size of a k-(n, n, λ) directed packing
[16], [5]. Replacing “exactly λ elements” in the definition of a perfect sequence covering array by “at
least one element” gives an (n, k) sequence covering array, or equivalently a completely k-scrambling
set of [n] [19], [6, Section 5], [10]. For a comprehensive study of constructions, nonexistence results,
and search methods for sequence covering arrays, see Chee et al. [3]. Sequence covering arrays are
useful in various applications in which faults can arise when certain events occur in a particular
order [21, 20, 1, 9, 24, 23, 12]. For example, the faults might be adverse reactions when a sequence of
medications is taken in a certain order. In order to determine whether faults arise under all possible
ordered subsets of at most k out of n events, we require a set of tests in which each ordering of each
subset of k events occurs: this is given by an (n, k)-sequence covering array. A PSCA(n, k, 1), if it
exists, is the smallest possible size of an (n, k)-sequence covering array and so represents the most
cost-efficient method of carrying out the required set of tests.

We define g(n, k) to be the smallest λ for which a PSCA(n, k, λ) exists. This value is well-defined,
because Sn is a trivial PSCA(n, k, n!k! ) and so g(n, k) ≤ n!

k! for all k ≤ n. The central objective in the
study of perfect sequence covering arrays is to determine, for each pair (n, k), the value of g(n, k)
and more generally the complete set of values λ for which there exists a PSCA(n, k, λ). The current
state of knowledge for g(n, k) for small values of n and k is shown in Table 1. We are concerned in
this paper with exact values rather than asympotic bounds.

The rest of the paper is organized in the following way. Section 2 describes previous results for the
value of g(n, k), including constructions, combinatorial nonexistence results, computer nonexistence
results, and asymptotic results. Section 3 describes a recursive algorithm for finding all possible
examples of a PSCA(n, k, λ) without repeated elements, for arbitrary λ ≥ 1. Section 4 identifies a
group-based structure shared by many examples of perfect sequence covering arrays, and modifies
the search algorithm by prescribing this structure. This allows us to determine new values or bounds
for g(n, k) for several pairs (n, k). It also allows us to find examples of new parameter sets (n, k, λ)
for which a PSCA(n, k, λ) exists, providing evidence for a positive answer to a question posed by
Charlie Colbourn (personal communication, Sept. 2021): does the existence of a PSCA(n, k, λ)
imply the existence of a PSCA(n, k, λ + 1)? Section 5 presents open problems arising from our
results.

The results of this paper are largely based on the Master’s thesis of the first author [17], which
contains additional examples and visualizations.

2 Previous results for g(n, k)

In this section, we summarize previous results for the value of g(n, k), including constructions,
combinatorial nonexistence results, computer nonexistence results, and asymptotic results.

We begin with two trivial constructions.

Lemma 2.1. Let n ≥ 2. Then g(n, 2) = g(n, n) = 1.

Proof. The set {12 · · ·n, n · · · 21} is trivially a PSCA(n, 2, 1), and so g(n, 2) = 1. The set Sn is
trivially a PSCA(n, n, 1), and so g(n, n) = 1.

The following composition construction is also trivial.

2



Lemma 2.2. Suppose there exists a PSCA(n, k, λ) and a PSCA(n, k, µ). Then their multiset union
is a PSCA(n, k, λ+ µ).

The following two bounds are straightforward to prove.

Lemma 2.3.

(i) Let k ≤ n− 1. Then g(n, k) ≥ g(n− 1, k).

(ii) Let k ≥ 2. Then g(n, k) ≥ 1
k g(n, k − 1).

Proof. For (i), delete the symbol n from each sequence of a PSCA(n, k, λ) to give a PSCA(n−1, k, λ).
For (ii), regard a PSCA(n, k, λ) as a PSCA(n, k − 1, kλ).

The following result was proved in terms of perfect codes capable of correcting single deletions.

Theorem 2.4 (Levenshtein [14, Thm. 3.1]). The set Sn can be partitioned into n sets of sequences,
each of which is a PSCA(n, n− 1, 1). Therefore g(n, n− 1) = 1.

Levenshtein [13, p. 140] conjectured in 1990 that the only values of k for which g(n, k) = 1 are
those provided by Lemma 2.1 and Theorem 2.4, namely 2, n− 1, and n. This was disproved by the
following result.

Proposition 2.5 (Mathon 1991, reported in [16, p. 191]). There exists a PSCA(6, 4, 1).

Mathon and van Trung showed by hand that g(5, 3) > 1 [16, Thm 3.2] (see [17, p. 13] for a minor
correction to the proof), and established the following nonexistence results by computer search.

Proposition 2.6 (Mathon and van Trung [16, Sects. 4 & 6]). We have g(7, 4) > 1 and g(7, 5) > 1
and g(8, 6) > 1.

Mathon and van Trung concluded that 4 might be the only value of k for which Levenshtein’s
conjecture fails. We express their revised conjecture in the following form, using Lemma 2.3 (i).

Conjecture 2.7 (Mathon and van Trung [16, p. 198]). Let k 6∈ {2, 4}. Then g(k + 2, k) > 1.

More than twenty years after publication of [16], the smallest open case of Conjecture 2.7 re-
mains k = 7.

The search result g(7, 4) > 1 stated in Proposition 2.6 was established in 2004 via an elegant
combinatorial proof that does not appear to have been widely recognized outside of the published
context of perfect deletion-correcting codes. We therefore rephrase it here.

Theorem 2.8 (Klein [11, Thm 3.2]). We have g(7, 4) > 1.

Proof. Suppose, for a contradiction, that P is a PSCA(7, 4, 1). We may assume after relabelling
that P contains the sequence 1234567. Let T be the set of elements in P \ {1234567} that contain
one of the 3-subsequences in the set

U = {124, 134, 234},

and let T ′ be the set of elements in P \ {1234567} that contain one of the 4-subsequences in the set

U ′ = {3124, 1324, 1243, 2134, 1342, 2314, 2341}.
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It is easy to check that T = T ′. By the PSCA property, the set P \ {1234567} covers each element
of U ′, so there are at least |U ′| = 7 elements in T ′ = T .

Now in the sequence 1234567 ∈ P , each of the symbols 5, 6, 7 occurs after each of the 3-
subsequences in U . Therefore in every element of T , each symbol 5, 6, 7 occurs before the symbol 4
(otherwise P would cover some 4-subsequence more than once). Since there are at least 7 elements
of T , but there are only 3! < 7 ways to order the symbols 5, 6, 7 to occur before the symbol 4, we
conclude that there are at least two elements of T covering the same 4-subsequence (formed from
some permutation of symbols 5, 6, 7 followed by the symbol 4). This gives the required contradiction.

The following nonexistence result was proved using matrix rank arguments and by reference to
results on covering arrays such as [4].

Theorem 2.9 (Chee et al. [3, Thm 2.3]). Let k ≥ 3. Then g(2k, k) > 1.

Although our interest in this paper is in determining the exact value of g(n, k) for small n and k,
we summarize in Theorems 2.10 and 2.11 below the best known asymptotic bounds on the growth
rate of g(n, k) as n and k grow. These results improve on previous asymptotic results for completely
scrambling sets [19, 10, 6, 18].

Theorem 2.10 holds for general k, and was proved by combining combinatorial arguments with
a result due to Wilson [22, Thm. 1] on the rank of a set inclusion matrix over a finite field.

Theorem 2.10 (Yuster [25, Thm. 1]). Let k ≥ 4 be an integer.

(i) If k/2 is a prime, then for all n ≥ k we have

g(n, k) ≥

(
n
k/2

)
−
(

n
k/2−1

)
k!

.

(ii) Let n and k grow such that n � k. Then g(n, k) > nk/2−ok(1) (where ok(1) represents a
function that approaches 0 as k →∞).

Theorem 2.11 holds for the case k = 3. The proof of the upper bound arises from a recursive
construction that builds a PSCA(n2, 3, 2(n+ 1)λ) from a PSCA(n, 3, λ), using a finite affine plane
of order n where n is a power of 3.

Theorem 2.11 (Yuster [25, Thm. 2]). Let n ≥ 3. Then n/6 ≤ g(n, 3) ≤ Cn(log2 n)log2 7 for some
absolute constant C.

In 2020, Yuster [25] determined that g(5, 3) = 2 by exhibiting a PSCA(5, 3, 2). This was the
first exact value of g(n, k) greater than 1 to be determined. To describe how this result was found,
we introduce two definitions.

Definition 2.12. The (n, k)-incidence matrix is the n! × n!
(n−k)! array whose rows are indexed by

the elements of Sn, whose columns are indexed by the elements of Sn,k, and whose (x, y) entry is 1
if x ∈ Sn covers y ∈ Sn,k and is 0 otherwise.

Each row sum of the (n, k)-incidence matrix is
(
n
k

)
and each column sum is n!

k! .
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Definition 2.13. Let X be a multiset with elements in Sn. The repetition vector of X with respect
to k, written rvk(X), is the sum of the rows of the (n, k)-incidence matrix that are indexed by the
elements of X.

The vector rvk(X) has length n!
(n−k)! , and its jth entry is the number of sequences in X that cover

k-subsequence j. The multiset X is therefore a PSCA(n, k, λ) if and only if each entry of rvk(X)
is λ.

We can now describe the PSCA(5, 3, 2) found by Yuster. We shall reinterpret this example in
Section 4.1.

Example 2.14 (Yuster [25, Prop. 3.4]). Let

X = {12345, 43215, 35214, 14523, 25413, 53412}.

Then the length 60 vector rv3(X) has four entries 0 (in the positions indexed by the 3-subsequences
132, 231, 154, 451), four entries 2 (in the positions indexed by the 3-subsequences 123, 321, 145,
541), and the remaining 52 entries 1.

Let σ = 13254 ∈ S5 and write Xσ = {xσ : x ∈ X}, where we follow the convention that the
composition of permutations π, σ given by πσ represents the action of π followed by σ. Then the
repetition vector of

Xσ = {13254, 52314, 24315, 15432, 34512, 42513}

has the same property as rv3(X), but the positions in rv3(Xσ) of the 0 and 2 entries are interchanged
with those in rv3(X). This ensures that every entry of rv3(X) + rv3(Xσ) is 2, and therefore that
X ∪Xσ is a PSCA(5, 3, 2). Since g(5, 3) > 1 [16, Thm. 3.2], we conclude that g(5, 3) = 2.

The original motivation for this paper was the challenge provided by Yuster’s concluding statement
[25, p. 592] that

“Proving additional exact values of g(n, k) which are not of unit multiplicity in addition
to g(5, 3) also seems challenging”.

Table 1 summarizes all previously known exact values of g(n, k) for small n and k.

3 Recursive search algorithm for PSCA(n, k, λ)

In this section, we describe a recursive algorithm for finding all possible examples of a PSCA(n, k, λ)
without repeated elements, for arbitrary λ ≥ 1. The algorithm is a tree search that attempts to
build a PSCA(n, k, λ) one n-sequence at a time without covering any k-subsequence more than λ
times, backtracking when this is not possible. Although we have followed Yuster [25, p. 586] in
allowing a perfect sequence covering array to be a multiset, we consider that in many respects it is
more natural to restrict the definition of a PSCA(n, k, λ) to a set and have therefore formulated the
algorithm to exclude repeated elements. For λ = 1, this restriction is redundant: if the algorithm
terminates without output for parameters (n, k, 1), then we can conclude that no PSCA(n, k, 1)
exists and so g(n, k) > 1.
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Table 1: Previously known exact values of g(n, k) for small n and k, and their sources. (s1):
Lemma 2.1. (s2): Theorem 2.4. (s3): Example 2.14. (s4): Proposition 2.5. (s5): Proposition 2.6.
(s6): Theorem 2.8. (s7): Lemma 2.3 (i).

n
k

2 3 4 5 6 7

2 1 (s1)
3 1 (s1) 1 (s1)
4 1 (s1) 1 (s2) 1 (s1)
5 1 (s1) 2 (s3) 1 (s2) 1 (s1)
6 1 (s1) ≥ 2 (s7) 1 (s4) 1 (s2) 1 (s1)
7 1 (s1) ≥ 2 (s7) ≥ 2 (s5,s6) ≥ 2 (s5) 1 (s2) 1 (s1)
8 1 (s1) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s5) 1 (s2)
9 1 (s1) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s7) ?

3.1 Idea of algorithm

Let A = (ax,y) be the (n, k)-incidence matrix (where x ∈ Sn and y ∈ Sn,k). We wish to construct
a PSCA(n, k, λ) by finding a (k!λ)-subset X of Sn for which each entry of rvk(X) is λ, which is
equivalent by Definition 2.12 to ∑

x∈X
ax,y = λ for each y.

We initialize X to be empty. We then add one element of Sn to X at a time, subject to the condition
that ∑

x∈X
ax,y ≤ λ for each y. (1)

The algorithm succeeds in finding a PSCA(n, k, λ) if |X| reaches k!λ. If it is not possible to add an
element of Sn to X subject to (1), we backtrack.

We keep track of two sets, Y and L. The set Y contains the k-subsequences not yet covered λ
times by the n-sequences in X, namely the values y for which

∑
x∈X ax,y < λ. The set L contains

the candidates for enlarging X, namely the n-sequences that do not cover a k-subsequence already
covered λ times. We also keep track of the repetition vectors R = rvk(X) = (

∑
x∈X ax,y) = (ry)

and M = rvk(L) = (
∑
`∈L al,y) = (my), although only at the positions y indexed by Y . We seek to

enlarge X so that the vector R attains the value λ in every position. Each position of the vector
M contains the largest amount by which R can be increased in that position (if every candidate in
L were added to X).

Suppose that X currently contains fewer than k!λ elements. If there is a k-subsequence that
cannot be covered λ times, even by adding every candidate in L to X (that is, ry+my < λ for some
y ∈ Y ), then we terminate the branch early and backtrack. Otherwise, we find the set Y ′ of y ∈ Y
for which ry attains its maximum value (that is, the k-subsequences that are not yet covered λ times
but are closest to being so). At the next iteration of the algorithm, we choose one y ∈ Y ′ and recurse
by attempting to add to X each of the elements of {` ∈ L : al,y = 1} in turn (each such addition
causing the k-subsequence y to be covered one more time). In order to reduce the number of tree
branches that must be searched, we choose a value of y ∈ Y ′ for which |{` ∈ L : al,y = 1}| = my
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is minimized: call this value y∗. Although the choice of y∗ is restricted to the subset Y ′ of Y , and
might not be unique within Y ′, the algorithm is exhaustive over the possibilities for incrementing
the value of ry∗ . Since we require each entry of ry for y ∈ Y to eventually reach the value λ, the
algorithm finds every possible example of a PSCA(n, k, λ) regardless of the sequence of values y∗

chosen.
For each x ∈ L in turn for which ax,y∗ = 1, we update the sets X,Y, L and the repetition vectors

R,M and then recurse. We update X by adding the n-sequence x. We update Y by removing all
k-subsequences newly covered λ times. We update R by adding the row of A indexed by x to it.
We update L by removing x (so that the same n-sequence x cannot be added to X a second time)
and by removing each n-sequence covering a k-subsequence that is newly covered λ times (because
the later inclusion of such an n-sequence in X would violate (1)). We update M by subtracting the
rows of A that have just been removed from L.

Pseudocode implementing this search procedure is given in Algorithm 1. By calling the proce-
dure SEARCH with X = ∅ and Y = Sn,k and R = (0, . . . , 0) and L = Sn and M = (n!k! , . . . ,

n!
k! ),

we obtain every possible PSCA(n, k, λ) without repeated elements. Furthermore, we may assume
after relabelling symbols that the perfect sequence covering array contains the sequence 12 · · ·n. We
therefore replace, for the first iteration of Algorithm 1, the set L(y∗) at Line 18 by the single-element
set {12 · · ·n}.

3.2 Discussion

The nonexistence results for a PSCA(n, k, 1) given in Proposition 2.6 were obtained by Mathon
and van Trung using a search algorithm for a directed t-packing [16, p. 163], that in turn relies
on a algorithm due to Mathon [15] for finding spreads in an incidence structure. A key feature of
this algorithm is that each successive iteration removes rows and columns of the incidence matrix
describing the incidence structure, leading to reduced time and space complexity. Mathon noted [15,
p.164] that “An actual implementation of this algorithm requires good data structures to facilitate
fast and efficient computations in, and updating of the various point and line sets”, without explicitly
describing these data structures.

Algorithm 1 for finding a PSCA(n, k, λ) without repeated elements is inspired by Mathon’s
algorithm, and reduces to a broadly equivalent form in the special case λ = 1. In particular, the
idea of improving efficiency by restricting the search to the subset Y ′ of Y in Algorithm 1 is taken
directly from Mathon’s paper [15]. The cases λ > 1 do not have a corresponding form in the
context of a directed t-packing and so were not considered in [15]. Algorithm 1 also contains a
feature not described in [15] or [16] that leads to a significant speed advantage for all cases λ ≥ 1:
keeping track of the vector M and passing it as a recursion parameter, which avoids having to
calculate |Y | column sums over |L| rows when carrying out the early termination test at Line 13.
The calculations in Lines 13, 16, 17 can be accomplished in linear time with a single pass through
the positions indexed by Y .

The input space requirement of Algorithm 1 is determined by the representation of the (n, k)-
incidence matrix. There is no need to store this matrix explicitly as an n! × n!

(n−k)! matrix over

{0, 1}: it is sufficient to store the positions of the 1 entries in each row, and the positions of the 1
entries in each column.
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Algorithm 1 Tree search for PSCA(n, k, λ) by backtracking

Input: PSCA parameters (n, k, λ) and A =
(
ax,y : x ∈ Sn, y ∈ Sn,k

)
= (n, k)-incidence matrix

1: procedure SEARCH(X,Y,R,L,M)
2: % X = sequences of partial PSCA(n, k, λ) P
3: % write (ry) = rvk(X) = (

∑
x∈X ax,y) = sum of rows of A indexed by X

4: % Y = {y ∈ Sn,k : ry < λ} = k-subsequences not yet covered λ times by P
5: % R = (ry : y ∈ Y ) = entries of rvk(X) indexed by Y
6: % L = {` 6∈ X : a`,y = 0 for all y 6∈ Y } = candidates for enlarging X
7: % write (my) = rvk(L) = (

∑
`∈L a`,y) = sum of rows of A indexed by L

8: % M = (my : y ∈ Y ) = entries of rvk(L) indexed by Y
9: if |X| = k!λ then

10: record X as a PSCA(n, k, λ).
11: return
12: end if
13: if ry +my < λ for some y ∈ Y then
14: return % terminate branch early
15: end if
16: let Y ′ be the set of y ∈ Y for which ry attains its maximum value.
17: choose an arbitrary y = y∗ ∈ Y ′ for which my attains its minimum value.
18: L(y∗) := {x ∈ L : ax,y∗ = 1}
19: for each x ∈ L(y∗) do
20: Xnew := X ∪ {x}
21: Ynew := Y \ {y : ry + ax,y = λ}
22: Rnew := (ry + ax,y : y ∈ Ynew)
23: B := {x} ∪ {` ∈ L : a`,y = 1 for at least one y ∈ Y \ Ynew}
24: Lnew := L \B
25: Mnew := (my −

∑
`∈B a`,y : y ∈ Ynew)

26: SEARCH(Xnew, Ynew, Rnew, Lnew,Mnew)
27: end for
28: end procedure
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3.3 New values for g(n, k)

Algorithm 1 finds the following examples of a PSCA(6, 3, 2) and a PSCA(7, 3, 2). By reference to
Table 1, this gives the new results g(6, 3) = g(7, 3) = 2.

Proposition 3.1.

(i) The following 12 sequences form a PSCA(6, 3, 2)

123456 154326 216543 245613 354162 361452
423165 461325 516234 532614 632541 645231

and therefore g(6, 3) = 2.

(ii) The following 12 sequences form a PSCA(7, 3, 2)

1234567 1573426 3275641 3617524 4261735 4756123
5164327 5243176 6257314 6345721 7216453 7431625

and therefore g(7, 3) = 2.

4 PSCA(n, k, λ) as union of cosets of a prescribed subgroup

In this section, we identify an algebraic structure shared by many examples of perfect sequence cov-
ering arrays. We then modify Algorithm 1 to search for perfect sequence covering arrays having this
prescribed structure, thereby determining new values or bounds for g(n, k) for several pairs (n, k).
The algorithm also finds examples of new parameter sets (n, k, λ) for which a PSCA(n, k, λ) ex-
ists. As in Section 3, we restrict the search to perfect sequence covering arrays without repeated
elements.

4.1 Motivation

The PSCA(5, 3, 2) given in Example 2.14 was constructed by Yuster as X ∪Xσ for a 6-subset X
of S5 and a permutation σ ∈ S5. We can equivalently interpret this perfect sequence covering array
as the union of six left cosets of the order 2 subgroup 〈σ〉 of S5, by reading the following table not
by rows (as X ∪Xσ) but by columns (as

⋃
x∈X x〈σ〉, where X is a set of left coset representatives

for 〈σ〉).

PSCA(5, 3, 2) with σ = 13254

〈σ〉 43215 〈σ〉 35214 〈σ〉 14523 〈σ〉 25413 〈σ〉 53412 〈σ〉
X 12345 43215 35214 14523 25413 53412
Xσ 13254 52314 24315 15432 34512 42513

We can likewise reinterpret the PSCA(6, 3, 2) and PSCA(7, 3, 2) of Proposition 3.1, found using
Algorithm 1, as the union of six left cosets of a suitable order 2 subgroup 〈σ〉 of S6 and S7,
respectively.
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PSCA(6, 3, 2) with σ = 154326

〈σ〉 216543 〈σ〉 354162 〈σ〉 461325 〈σ〉 532614 〈σ〉 645231 〈σ〉
X 123456 216543 354162 461325 532614 645231
Xσ 154326 516234 423165 361452 245613 632541

PSCA(7, 3, 2) with σ = 4261735

〈σ〉 1573426 〈σ〉 3275641 〈σ〉 3617524 〈σ〉 5164327 〈σ〉 5243176 〈σ〉
X 1234567 1573426 3275641 3617524 5164327 5243176
Xσ 4261735 4756123 6257314 6345721 7431625 7216453

This motivates us to seek a PSCA(n, k, λ) as the union of k!λ
|G| distinct cosets of a nontrivial

subgroup G of Sn, where the parameter λ need not take the value 2; the subgroup G need not be
cyclic, nor have order 2; and we can choose either right cosets of a subgroup or left cosets. However,
we shall see in Section 4 that the use of left cosets leads to a simplification in the search (using
conjugacy classes), and a richer existence pattern (involving a larger subgroup G).

We note that a single PSCA(n, k, λ) can admit more than one representation as a union of
distinct cosets of a subgroup of Sn. For example, the PSCA(6, 3, 2) represented above as six left
cosets of the order 2 subgroup 〈154326〉 can also be represented as the entire order 12 subgroup
〈154326, 216543〉 ∼= D12. Likewise, the PSCA(7, 3, 2) represented above as six left cosets of the
order 2 subgroup 〈4261735〉 can also by represented as six right cosets of the order 2 subgroup
〈3617524〉, and as two left cosets of the order 6 subgroup 〈3275641, 4261735〉 ∼= S3.

We remark that several aspects of our approach can be recognized in Mathon and van Trung’s
work [16]. We note in particular the following refinement of Proposition 2.5, found by computer
search. We write D2n for the dihedral group of order 2n.

Proposition 4.1 (Mathon and van Trung [16, Thm 4.1]). Up to isomorphism, there are exactly
two examples P1, P2 of a PSCA(6, 4, 1):

(i) the 24 sequences of P1 comprise a subgroup G1
∼= S4 of S6; the automorphism group of P1 is

isomorphic to S4.

(ii) the 24 sequences of P2 comprise a union of three right cosets of a subgroup G2
∼= D8 of S6;

the automorphism group of P2 is isomorphic to D8. (See [17, p. 29] for a correction to the
listing of P2 in [16, p. 192].)

4.2 Left or right cosets

We next show how, for a perfect sequence covering array comprising a union of distinct cosets of a
nontrivial subgroup, there is a fundamental distinction between left and right cosets. We firstly note
that the right action of a permutation on a subset X of Sn permutes the entries of the repetition
vector rvk(X).

Lemma 4.2. Let X be a subset of Sn and let σ ∈ Sn. Then the vector rvk(Xσ) is obtained by
permuting the entries of the vector rvk(X).

Proof. Under the convention that the permutation composition πσ represents the action of π fol-
lowed by σ, the right action of σ on the set X permutes the symbols in [n] and so permutes the
elements of Sn,k. The result follows by Definition 2.13.

10



It follows that the right action of a permutation σ ∈ Sn maps one PSCA(n, k, λ) to another.

Corollary 4.3. Suppose P is a PSCA(n, k, λ), and let σ ∈ Sn. Then Pσ is also a PSCA(n, k, λ).

Subgroups G and H of Sn are conjugate in Sn if H = σGσ−1 for some σ ∈ Sn. Conjugacy
is an equivalence relation on the set of subgroups of Sn, and the equivalence class of G under
conjugation is the conjugacy class Cl(G) := {σGσ−1 : σ ∈ Sn}. Consider searching over all
nontrivial subgroups G of Sn and all sets R (of cardinality k!λ

|G| ) of left coset representatives for G

to find a perfect sequence covering array of the form
⋃
π∈R πG. We now use Corollary 4.3 to show

that it is sufficient to restrict attention to a single representative G from each conjugacy class
of subgroups of Sn. This drastically reduces the required computation for an exhaustive search.
For example, S7 contains 11299 nontrivial subgroups, but only 95 nontrivial conjugacy classes of
subgroups.

Theorem 4.4. Let G be a subgroup of Sn and let H ∈ Cl(G). Suppose there is a PSCA(n, k, λ)
that is a union of distinct left cosets of H. Then there is a PSCA(n, k, λ) which is a union of
distinct left cosets of G.

Proof. Let P be a PSCA(n, k, λ) that can be written as

P =
⋃
π∈R

πH (2)

for a set R of left coset representatives for H. Since H ∈ Cl(G), for some σ ∈ Sn we can write

P =
⋃
π∈R

π(σGσ−1)

=

( ⋃
µ∈Rσ

µG

)
σ−1.

Then Pσ =
⋃
µ∈Rσ µG is a union of distinct left cosets of G, and is a PSCA(n, k, λ) by Corol-

lary 4.3.

Consider instead searching for a perfect sequence covering array as a union
⋃
σ∈RGσ of distinct

right cosets of G. Theorem 4.4 no longer holds when we replace left cosets by right cosets, because
it relies on Corollary 4.3 which fails when the right action of σ on P is replaced by the left action.
Therefore an exhaustive search must consider all nontrivial subgroups of Sn. However, there is now
a worthwhile simplification in that we may assume the subgroup G itself is one of the right cosets
contained in the perfect sequence covering array

⋃
σ∈RGσ: let µ ∈ R, and note from Corollary 4.3

that
(⋃

σ∈RGσ
)
µ−1 =

⋃
σ∈RG(σµ−1) is a perfect sequence covering array, and that it contains

the right coset G(µµ−1) = G.

4.3 Algorithm description

We can now describe an algorithm for finding all possible examples of a PSCA(n, k, λ) that is a
union of k!λ

|G| distinct cosets of a prescribed nontrivial subgroup G of Sn. The algorithm attempts

to build a PSCA(n, k, λ) one coset of G at a time without covering any k-subsequence more than

11



λ times. If it terminates without output then there is no PSCA(n, k, λ) that is a union of distinct
cosets of G.

The algorithm follows the same principles as Algorithm 1, but operates on the following com-
pressed version of the (n, k)-incidence matrix in which the |G| repetition vectors indexed by the
sequences of a coset are replaced by their sum, because the entire coset is either contained or not
contained in the perfect sequence covering array. The advantage of this approach is that prescribing
the subgroup G reduces the maximum search depth by a factor of |G|. This gives a dramatic speed
improvement, even for |G| = 2.

Definition 4.5. Let G be a subgroup of Sn, and let R be a complete set of left (or right) coset
representatives for G in Sn. The left (or right) (n, k)-incidence matrix for G is the n!

|G| ×
n!

(n−k)!
array over {0, 1, . . . , |G|} whose rows are indexed by R, whose columns are indexed by the elements
of Sn,k, and whose (x, y) entry is the number of times the coset xG (or Gx) covers y ∈ Sn,k.

Pseudocode implementing the search procedure is given in Algorithm 2 (which reduces to Al-
gorithm 1 if we take G to be the trivial subgroup). Algorithm 1 keeps track of a shrinking set L of
rows and a shrinking set Y of columns of the (n, k)-incidence matrix; Algorithm 2 does the same,
but in relation to the (n, k)-incidence matrix for G. This requires the following modifications to
Algorithm 1, because the entries ax,y of the latter matrix are no longer restricted to {0, 1}:

Line 9. The target size of |X| is the number k!λ
|G| of cosets, rather than the number k!λ of n-

sequences.

Line 18. The entries of the (n, k)-incidence matrix for G lie in {0, 1, . . . , |G|} rather than {0, 1},
so the test ax,y∗ = 1 is replaced by ax,y∗ 6= 0.

Line 6. The set L of candidates for enlarging X is more constrained, because inclusion of a row
containing an entry a`,y > 1 could cause the sum a`,y + ry to exceed λ. We therefore impose
that a`,y + ry ≤ λ over all values of y (not just those lying outside Y ). We can rewrite L as
specified in Line 6 as

{` 6∈ X : a`,y = 0 for all y 6∈ Y } ∩ {` 6∈ X : a`,y + ry ≤ λ for all y ∈ Y },

to see that the set L in Algorithm 2 is a subset of the set L in Algorithm 1.

Line 23. The set B used to update L at Line 24 follows from the definition of L at Line 6 and the
updated value of R at Line 22.

The procedure SEARCH of Algorithm 2 searches for a PSCA(n, k, λ) comprising a union of k!λ
|G|

distinct cosets of a single prescribed nontrivial subgroup G of Sn, where |G| divides k!λ. In the
case of left cosets, it is sufficient to search over a single representative G of each conjugacy class
of nontrivial subgroups of Sn (see Section 4.2). For each such subgroup G, we may exclude from
the initial candidate set L each coset representative that indexes a row of the left (n, k)-incidence
matrix for G containing some entry greater than λ, and initialize M accordingly. To determine
whether a PSCA(n, k, λ) exists using this procedure, it is most efficient to examine the set of
suitable subgroups G for Algorithm 2 in decreasing order of |G|, because a larger value of |G| gives
a more dramatic speed improvement over Algorithm 1. We do not take G to the trivial group,
because then Algorithm 2 reduces to Algorithm 1 and, even if a perfect sequence covering array is
found, no additional structure is identified.
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Algorithm 2 Tree search for union-of-cosets PSCA(n, k, λ) by backtracking

Input: PSCA parameters (n, k, λ) and A =
(
ax,y : x ∈ R, y ∈ Sn,k

)
= left or right (n, k)-incidence

matrix for a subgroup G of Sn and complete set of coset representativesR, where |G| divides k!λ.
1: procedure SEARCH(X,Y,R,L,M)
2: % X = coset representatives of partial PSCA(n, k, λ) P
3: % write (ry) = rvk(X) = (

∑
x∈X ax,y) = sum of rows of A indexed by X

4: % Y = {y ∈ Sn,k : ry < λ} = k-subsequences not yet covered λ times by P
5: % R = (ry : y ∈ Y ) = entries of rvk(X) indexed by Y
6: % L = {` 6∈ X : a`,y + ry ≤ λ for all y} = candidates for enlarging X
7: % write (my) = rvk(L) = (

∑
`∈L a`,y) = sum of rows of A indexed by L

8: % M = (my : y ∈ Y ) = entries of rvk(L) indexed by Y
9: if |X| = k!λ

|G| then

10: record X as a set of coset representatives for a PSCA(n, k, λ).
11: return
12: end if
13: if ry +my < λ for some y ∈ Y then
14: return % terminate branch early
15: end if
16: let Y ′ be the set of y ∈ Y for which ry attains its maximum value.
17: choose an arbitrary y = y∗ ∈ Y ′ for which my attains its minimum value.
18: L(y∗) := {x ∈ L : ax,y∗ 6= 0}
19: for each x ∈ L(y∗) do
20: Xnew := X ∪ {x}
21: Ynew := Y \ {y : ry + ax,y = λ}
22: Rnew := (ry + ax,y : y ∈ Ynew)
23: B := {x} ∪ {` ∈ L : a`,y + ry + ax,y > λ for some y ∈ Y }
24: Lnew := L \B
25: Mnew := (my −

∑
`∈B a`,y : y ∈ Ynew)

26: SEARCH(Xnew, Ynew, Rnew, Lnew,Mnew)
27: end for
28: end procedure
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In the case of right cosets, we must instead search over all subgroups G of Sn, although we may
take the initial set X to be {1G} and initialize Y , R, L, M accordingly (see Section 4.2). We need
examine the subgroup G only if the row indexed by 1G of the right (n, k)-incidence matrix for G
has all entries at most λ; if so, then the same holds for all other rows by Lemma 4.2.

Table 2 illustrates the differences in CPU time required to search for all possible examples
of a PSCA(n, k, λ) without repeated elements using Algorithm 1, and using distinct left or right
cosets with Algorithm 2 over all subgroups G of a specified order. These search times refer to a
C implementation on a single core of an Intel Xeon E5-2680, excluding the precalculation time
for incidence matrices in GAP [7] for Algorithm 2 (which carries negligible overhead for larger
searches). Comparison of timings for (n, k, λ) = (6, 3, 2) shows that Algorithm 2, when it succeeds,
is significantly faster than Algorithm 1 even when |G| = 2. Comparison of timings for (n, k, λ) =
(7, 3, 2) shows that Algorithm 2, when it succeeds for a larger |G|, is dramatically faster than with a
smaller |G|. Comparison of timings for (n, k, λ) = (7, 4, 2) shows that Algorithm 2 using left cosets
can succeed when Algorithm 2 using right cosets fails for the same |G|, and in that case a successful
search using left cosets is significantly faster than using right cosets. The comparison times for the
parameter sets (7, 5, 1) and (8, 6, 1) taken from [16] refer to exhaustive searches carried out in 1999
on an Ultra SPARCstation 5 to establish Proposition 2.6.

Table 2: CPU time to search for all possible examples of a PSCA(n, k, λ)

method cosets (n, k, λ) |G| examples? CPU time 1999 search [16]
Algorithm 1 (7, 5, 1) no 0.1 seconds 5 minutes
Algorithm 1 (8, 6, 1) no 100 minutes 100 hours
Algorithm 1 (6, 3, 2) yes 3 seconds
Algorithm 1 (7, 3, 2) yes 40 minutes
Algorithm 2 left (6, 3, 2) 2 yes 0.4 seconds
Algorithm 2 left (7, 3, 2) 2 yes 50 seconds
Algorithm 2 left (7, 3, 2) 6 yes 0.05 seconds
Algorithm 2 left (7, 4, 2) 6 yes 3 seconds
Algorithm 2 right (7, 4, 2) 6 no 10 seconds
Algorithm 2 right (7, 4, 2) 2 yes 210 minutes

4.4 New values and bounds for g(n, k)

Algorithm 2 finds the following examples of a PSCA(7, 4, 2), a PSCA(7, 5, 4), a PSCA(8, 3, 3), and a
PSCA(9, 3, 4) as a union of left cosets. By reference to Table 1, this gives the new results g(7, 4) = 2
and g(7, 5) ∈ {2, 3, 4} and g(8, 3) ∈ {2, 3} and g(9, 3) ∈ {2, 3, 4}.

Proposition 4.6.

(i) The following 48 sequences form a PSCA(7, 4, 2) as a union of 8 left cosets of the subgroup
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G = 〈4735621〉 ∼= C6 of S7:

left coset sequences
1254736G 1254736 2517634 4765132 5126437 6472531 7641235
1347256G 1347256 2376514 4351762 5364127 6325471 7312645
1352746G 1352746 2315674 4367152 5321467 6374521 7346215
1362745G 1362745 2345671 4327156 5371462 6314527 7356214
1365472G 1365472 2341765 4326517 5372641 6317254 7354126
1462537G 1462537 2745136 4527631 5671234 6214735 7156432
1745236G 1745236 2671534 4156732 5462137 6527431 7214635
1765234G 1765234 2641537 4126735 5472136 6517432 7254631

Therefore g(7, 4) = 2.

(ii) The following 480 sequences (listed only by reference to cosets) form a PSCA(7, 5, 4) as 20
left cosets of the subgroup G = 〈7261354, 4216537〉 ∼= S4 of S7:

1234567G 1236574G 1324576G 1324675G 1325476G
1325674G 1347265G 1354267G 1357642G 1364275G
1364572G 1367542G 1374256G 1375624G 1623574G
1635247G 1637425G 2137465G 2137654G 2163457G

Therefore g(7, 5) ∈ {2, 3, 4}.

(iii) The following 18 sequences form a PSCA(8, 3, 3) as a union of 9 left cosets of the subgroup
G = 〈85672341〉 ∼= C2 of S8:

left coset sequences
12345678G 12345678 85672341
15468237G 15468237 82731564
17624385G 17624385 84357612
27561843G 27561843 54238176
28461573G 28461573 51738246
31864275G 31864275 68137542
32654187G 32654187 65327814
37461528G 37461528 64738251
47218653G 47218653 74581326

Therefore g(8, 3) ∈ {2, 3}.

(iv) The following 24 sequences form a PSCA(9, 3, 4) as a union of 4 left cosets of the subgroup
G = 〈768241593〉 ∼= C6 of S9:

left coset sequences
123456897G 123456897 258714936 473165892 519627384 649572381 768241935
154372968G 154372968 217865349 461327958 526941873 675914823 742856319
198426537G 198426537 239754186 498175632 583617294 683542791 739261485
318697425G 318697425 348592176 829436751 879135264 953784612 963281547

Therefore g(9, 3) ∈ {2, 3, 4}.
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Table 3: Updated table of g(n, k) for small n and k, with new values or bounds in bold. (s1):
Lemma 2.1. (s2): Theorem 2.4. (s3): Example 2.14. (s4): Proposition 2.5. (s5): Proposition 2.6.
(s7): Lemma 2.3 (i). (s8): Proposition 3.1. (s9): Proposition 4.6.

n
k

2 3 4 5 6 7

2 1 (s1)
3 1 (s1) 1 (s1)
4 1 (s1) 1 (s2) 1 (s1)
5 1 (s1) 2 (s3) 1 (s2) 1 (s1)
6 1 (s1) 2 (s8) 1 (s4) 1 (s2) 1 (s1)
7 1 (s1) 2 (s8) 2 (s9) 2 or 3 or 4 (s9) 1 (s2) 1 (s1)
8 1 (s1) 2 or 3 (s9) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s5) 1 (s2)
9 1 (s1) 2 or 3 or 4 (s9) ≥ 2 (s7) ≥ 2 (s7) ≥ 2 (s7) ?

Table 3 is an updated table of values of g(n, k) for small n and k, taking account the new values
and bounds from Proposition 3.1 and Proposition 4.6.

A search for a PSCA(8, 3, 2) using left cosets in Algorithm 2 completed without output: if a
PSCA(8, 3, 2) exists, then it does not occur as a union of distinct left cosets of a nontrivial subgroup
of S8. A search for a PSCA(8, 4, 2) and a PSCA(9, 3, 2) using left cosets in Algorithm 2 completed
without output for a representative of each conjugacy class of subgroups of order greater than 2:
if a PSCA(8, 4, 2) or PSCA(9, 3, 2) occurs as a union of distinct left cosets of a nontrivial subgroup
of S8 or S9, respectively, then the subgroup has order 2.

Although we obtained some positive results using Algorithm 2 for right cosets, the structure
uncovered was less rich than for left cosets. In particular, in each case tested we found that if
a PSCA(n, k, λ) occurs as a union of distinct right cosets of a nontrivial subgroup G of Sn, then
a PSCA(n, k, λ) also occurs as a union of distinct left cosets of a subgroup G′ of Sn, where G′

is isomorphic to G. There were also several instances when the largest |G| was smaller than the
largest |G′|, in which case the search using right cosets was signficantly slower (see Section 4.3).
We therefore did not attempt to carry out some of the larger searches for right cosets.

4.5 New parameter sets (n, k, λ) for a PSCA(n, k, λ)

Charlie Colbourn (personal communication, Sept. 2021) posed the following question.

Question 4.7. Does the existence of a PSCA(n, k, λ) imply the existence of a PSCA(n, k, λ+ 1)?

This prompts the following observation as a direct consequence of Lemma 2.2.

Lemma 4.8. Let k ≤ n and let g = g(n, k). Suppose there exists a PSCA(n, k, λ) for each

λ ∈ {g, g + 1, . . . , 2g − 1}.

Then there exists a PSCA(n, k, λ) if and only if λ ≥ g, and the answer to Question 4.7 is yes for
the parameter pair (n, k).
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Algorithm 2 finds the following examples of a PSCA(5, 3, 3), a PSCA(6, 3, 3), a PSCA(7, 3, 3),
a PSCA(7, 4, 3), a PSCA(8, 3, 4), and a PSCA(8, 3, 5) as a union of left cosets. Each of these
parameter sets is new. Combination of these examples with the results in Table 3 shows that the
answer to Question 4.7 is yes for each of the parameter pairs

(n, k) ∈ {(5, 3), (6, 3), (7, 3), (7, 4), (8, 3)},

regardless of whether g(8, 3) = 2 or g(8, 3) = 3, and application of Lemma 4.8 gives Corollary 4.10.
We do not currently know of a parameter set (n, k, λ) for which the answer to Question 4.7 is no.

Proposition 4.9.

(i) The following 18 sequences form a PSCA(5, 3, 3) as a union of 9 left cosets of the subgroup
G = 〈43215〉 ∼= C2 of S5:

left coset sequences
12345G 12345 43215
12435G 12435 43125
13452G 13452 42153
15324G 15324 45231
21543G 21543 34512
23514G 23514 32541
24513G 24513 31542
51423G 51423 54132
52314G 52314 53241

(ii) The following 18 sequences form a PSCA(6, 3, 3) as a union of 3 left cosets of the subgroup
G = 〈634215, 456123〉 ∼= S3 of S6:

left coset sequences
123456G 123456 215634 361542 456123 542361 634215
134265G 134265 256143 315624 461532 523416 642351
162435G 162435 241653 326514 435162 514326 653241

(iii) The following 18 sequences form a PSCA(7, 3, 3) as a union of 9 left cosets of the subgroup
G = 〈3412765〉 ∼= C2 of S7:

left coset sequences
1234567G 1234567 3412765
1253764G 1253764 3471562
1643572G 1643572 3621754
5147362G 5147362 7325164
5241673G 5241673 7423651
5276341G 5276341 7456123
5432617G 5432617 7214635
6175324G 6175324 6357142
6245371G 6245371 6427153
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(iv) The following 72 sequences form a PSCA(7, 4, 3) as a union of 18 left cosets of the subgroup
G = 〈1576342〉 ∼= C4 of S7:

left coset sequences
1234567G 1234567 1324765 1576342 1756243
1256437G 1256437 1376425 1534672 1724653
2136754G 2136754 3126574 5174236 7154326
2164573G 2164573 3164752 5146327 7146235
2315476G 2315476 3217456 5713624 7512634
2436751G 2436751 3426571 5674231 7654321
2537614G 2537614 3725614 5372416 7253416
2574613G 2574613 3754612 5326417 7236415
2716354G 2716354 3516274 5214736 7314526
2741536G 2741536 3541726 5261374 7361254
2764351G 2764351 3564271 5246731 7346521
4127356G 4127356 4135276 6152734 6173524
4162753G 4162753 4163572 6145237 6147325
4251673G 4251673 4371652 6531427 6721435
4263175G 4263175 4362157 6547123 6745132
4523716G 4523716 4732516 6275314 6357214
4536172G 4536172 4726153 6254137 6374125
4576312G 4576312 4756213 6234517 6324715

(v) The following 24 sequences form a PSCA(8, 3, 4) as the single left coset 12354678G of the
subgroup G = 〈67142358, 46572381〉 ∼= SL(2, 3) of S8:

12354678 16543872 18435276 24851637 26518734 27185436 31746825 35674128
38467521 41752683 43275186 46527381 51738264 52387461 54873162 63241857
67124358 68412753 73268514 74826315 75682413 82316745 85631247 87163542

(vi) The following 30 sequences form a PSCA(8, 3, 5) as a union of 5 left cosets of the subgroup
G = 〈65872143, 45712836〉 ∼= S3 of S8:

left coset sequences
12345678G 12345678 35182764 45712836 65872143 72465381 82635417
12485736G 12485736 35842617 45162378 65732481 72615843 82375164
17384625G 17384625 36148752 43761852 64837152 78416325 81673425
17564823G 17564823 36278451 43281657 64217358 78536124 81543726
21685347G 21685347 27315468 28475631 53742186 54862713 56132874

Corollary 4.10.

(i) For each (n, k) ∈ {(5, 3), (6, 3), (7, 3), (7, 4)}, there exists a PSCA(n, k, λ) if and only if λ ≥ 2.

(ii) There exists a PSCA(8, 3, λ) if and only if λ ≥ g(8, 3), and g(8, 3) ∈ {2, 3}.
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4.6 Examples of a group-based PSCA(n, n− 1, 1)

Algorithm 2 finds the following examples of a PSCA(n, n− 1, 1) as a union of (n−1)!
|G| left cosets of a

nontrivial subgroup G of Sn, for each n ∈ {4, 5, 6, 7}. This suggests the possibility of a group-based
proof of Theorem 2.4, as an alternative to Levenshtein’s coding-theoretic proof.

Proposition 4.11. The following sets of (n−1)! sequences (listed only by reference to cosets) form

a PSCA(n, n− 1, 1) as a union of (n−1)!
|G| left cosets of the subgroup G of Sn.

(i) n = 4 and the subgroup G = 〈3412〉 ∼= C2 of S4:

1234G 1432G 2413G

(ii) n = 5 and the subgroup G = 〈34125, 43215〉 ∼= C2 × C2 of S5:

12345G 13254G 14253G 15243G 15342G 51432G

(iii) n = 6 and the subgroup G = 〈125634, 346521, 345612〉 ∼= S4 of S6:

123456G 132546G 132645G 135642G 136524G

(iv) n = 7 and the subgroup G = 〈7235461, 1756432〉 ∼= S4 of S7:

1234657G 1235476G 1237456G 1273564G 1324576G 1325467G
1326475G 1326574G 1342756G 1345267G 1352764G 1356427G
1357246G 3124756G 3125746G 3126745G 3127654G 3145627G
3154267G 3154762G 3156742G 3412657G 3415276G 3421567G
3425176G 3426715G 3427651G 3456172G 3457126G 3457621G

5 Open problems

We have established new values and bounds for g(n, k), as shown in Table 3. We have established the
following new parameter sets for a PSCA(n, k, λ): (5, 3, 3), (6, 3, 3), (7, 3, 3), (7, 4, 3), (8, 3, 4), and
(8, 3, 5) (see Section 4.5). We have given an example of a PSCA(n, n−1, 1) as a union of left cosets
of a nontrivial subgroup of Sn for n ∈ {4, 5, 6, 7} (see Section 4.6). Examples of a PSCA(n, k, λ)
formed as a union of distinct left cosets of a nontrivial subgroup appear to be widespread, and
prescribing this structure brings into reach various searches that would otherwise be intractable.

We propose several open problems arising from our results.

(i) Determine further exact values and bounds for g(n, k).

(ii) Find a PSCA(n, k, λ) for new parameter sets (n, k, λ).

(iii) Find a group-based construction for a PSCA(n, n− 1, 1) for each n ≥ 2.

(iv) Is there a parameter set (n, k, λ) for which a PSCA(n, k, λ) exists but there is no example
that is a union of left cosets of a nontrivial subgroup of Sn?

(v) Resolve Question 4.7 by determining whether the existence of a PSCA(n, k, λ) implies the
existence of a PSCA(n, k, λ+ 1).
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(vi) The recursive search methods presented here appear to encounter memory constraints when
attempting to settle the smallest open case of Conjecture 2.7, namely whether g(9, 7) > 1.
Are there theoretical techniques or improved search methods for handling this case?

(vii) Find more combinatorial nonexistence results for perfect sequence covering arrays.

Comments

The authors thank Aidan Gentle and Ian Wanless for kindly sharing a preprint of the paper [8],
which describes how they used different methods from ours to computationally determine existence
and nonexistence results for perfect sequence covering arrays that complement ours. They indepen-
dently showed that g(6, 3) = g(7, 3) = 2. They also recovered some of the results originally reported
in [17], in particular that g(7, 4) = 2. They further established two results that our methods were
not able to find: g(8, 3) > 2 and g(8, 4) > 2, the first of which combines with the PSCA(8, 3, 3)
of Proposition 4.6 to show that g(8, 3) = 3. Conversely, our methods found results that were not
obtained in [8], including that g(7, 5) ≤ 4 and g(9, 3) ≤ 4. The paper [8] also gives various bounds
on the value of g(n, k) that arise from examples of perfect sequence covering arrays comprising a
complete subgroup of Sn.

The authors gratefully acknowledge helpful discussions with Karen Meagher and Charlie Col-
bourn.
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